Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study.

نویسندگان

  • Nikita Vladimirov
  • Yuhai Tu
  • Roger D Traub
چکیده

Mechanisms of place cell replay occurring during sharp-wave ripples (SPW-Rs) remain obscure due to the fact that ripples in vitro depend on non-synaptic mechanisms, presumably via axo-axonal gap junctions between pyramidal cells. We suggest a model of in vivo SPW-Rs in which synaptic excitatory post-synaptic potentials (EPSPs) control the axonal spiking of cells in SPW-Rs: ripple activity remains hidden in the network of axonal collaterals (connected by gap junctions) due to conduction failures, unless there is a sufficient dendritic EPSP. The EPSP brings the axonal branching point to threshold, and action potentials from the collateral start to propagate to the soma and to the distal axon. The model coherently explains multiple experimental data on SPW-Rs, both in vitro and in vivo. The mechanism of synaptic gating leads to the following implication: a sequence of pyramidal cells can be replayed at ripple frequency by the superposition of subthreshold dendritic EPSPs and ripple activity in the axonal plexus. Replay is demonstrated in both forward and reverse directions. We discuss several testable predictions. In general, the mechanism of synaptic gating suggests that pyramidal cells under certain conditions can act like a transistor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neural mass model of CA1-CA3 neural network and studying sharp wave ripples

We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...

متن کامل

BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus

Action-potential-induced LTD (AP-LTD) is a form of synaptic plasticity that reduces synaptic strength in CA1 hippocampal neurons firing antidromically during sharp-wave ripples. This firing occurs during slow-wave sleep and quiet moments of wakefulness, which are periods of offline replay of neural sequences learned during encoding sensory information. Here we report that rapid and persistent d...

متن کامل

The Temporal and Bilateral Structure of Hippocampal Replay

The hippocampus is required for the formation, but not storage, of long-term episodic memories. During memory formation, however, the hippocampus is not a lone actor; rather it works in concert with various structures across the brain. The mechanisms by which diverse populations of cells are coordinated for the formation of a single, coherent memory remain unknown. This thesis is an investigati...

متن کامل

A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.

UNLABELLED Hippocampal activity is fundamental for episodic memory formation and consolidation. During phases of rest and sleep, it exhibits sharp-wave/ripple (SPW/R) complexes, which are short episodes of increased activity with superimposed high-frequency oscillations. Simultaneously, spike sequences reflecting previous behavior, such as traversed trajectories in space, are replayed. Whereas ...

متن کامل

Sleep – More Local and Complex than Previously Thought?

pocampal sharp wave ripples (hSWR) a replay of the memory trace occurs, which is then “transferred” into the cortex via sleep spindles and perhaps slow oscillations. At this point it is important to note that for one most evidence regarding this theory is of correlative nature and therefore cannot conclude causality. Up until now only two studies in rodents could show more than correlational ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 38 10  شماره 

صفحات  -

تاریخ انتشار 2013